CLASS: IX NCERT (CBSE)	PHYSICS: For Class 9 P. Work and Energy	age:1
Question (1): Work done = Force	x	
	1. distance	
	2. acceleration	
	3. velocity	
	4. speed	
		Ans:
Question (2): 1 joule = 1	-	
	$1. \mathrm{N} \mathrm{m}^2$	
	2. kgm/s ²	
	3. N m	
	4. $N^2 m^2$	
		Ans:
Question (3): Which form of ener	rgy does the flowing water possess?	
	1. gravitational energy	
	2. potential energy	
	3. electrical energy	
	4. kinetic energy	
		Ans:
Question (4): A body of mass 2 k ground is	g is dropped from a height of 1m. Its kinetic energy as it t	ouches the
	1. 19.6 N	
	2. 19.6 J	
	3. 19.6 kg	
	4. 19.6 m	
	4. 19.6 m	Ans:
Question (5): The unit of power is	4. 19.6 m	Ans:
Question (5): The unit of power is	4. 19.6 m	Ans:
Question (5): The unit of power is	4. 19.6 m	Ans:
Question (5): The unit of power is	4. 19.6 m s 1. watt per second	Ans:
Question (5): The unit of power is	4. 19.6 m s 1. watt per second 2. joule	
Question (5): The unit of power is Question (6): 3730 watts =	 4. 19.6 m s 1. watt per second 2. joule 3. kilojoule 4. joule per second 	
	4. 19.6 m s 1. watt per second 2. joule 3. kilojoule 4. joule per second h.p.	
	4. 19.6 m s 1. watt per second 2. joule 3. kilojoule 4. joule per second _h.p. 1. 5	
	4. 19.6 m s 1. watt per second 2. joule 3. kilojoule 4. joule per second _h.p. 1. 5 2. 2	
	4. 19.6 m s 1. watt per second 2. joule 3. kilojoule 4. joule per second _h.p. 1. 5	Ans:

Work and Energy
Question (7): A coolie carries a load of 500 N to a distance of 100 m. The work done by him is
1. 5 N
2. 50,000 Nm
3.0
4. 1/5 N
Ans:
Question (8): The P.E. of a body at a certain height is 200 J. The kinetic energy possessed by it when i just touches the surface of the earth is
1. > P.E.
2. < P.E.
3. = P.E.
4. cannot be known
Ans:
Question (9): Power is a measure of the
 rate of change of momentum force which produces motion SCIENTIA
4. rate of change of energy Ans: Question (10): Two objects of masses 1 x 10 ⁻³ kg and 4 x 10 ⁻³ kg have equal momentum. What is the
ratio of their kinetic energies?
1. 4:1
2. 2:1
3. 16:1
4. √2 : 1
$\sqrt{2}$ Ans:
Question (11): A 40 newton object is released from a height of 10 m. Just before it hits the ground, its kinetic energy, in joules is
1.400
2. 3920
3. 2800
4. 4000
Ans: Question (12): If the speed of an object is doubled then its kinetic energy is
1. doubled
2. quadrupled
3. halved
J. Harved

PHYSICS: FOR CLASS 9 PAGE : 2

CLASS: IX NCERT (CBSE)

Website: <u>www.scientiatutorials.in</u> **T** +91 9864920707 E-mail: <u>scientiatutorials@gmail.com</u>

WORK AND EMERGY 4. tripled Ans: Question (13): 1.5 kW = watts 1. 1500 2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 3. potential energy + kinetic energy 4. sound energy 4. kinetic energy 4. sound energy 4. kinetic energy 5. potential energy 4. kinetic energy 5. potential energy 5. potent		
4. tripled Ans: Question (13): 1.5 kW = watts 1. 1500 2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Ans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same Ruestion (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 44 m/s	CLASS: IX NCERT (CBSE)	PHYSICS: FOR CLASS 9 PAGE : 3 Work and Energy
Ans: Question (13): 1.5 kW = watts 1. 1500 2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mas: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 5. potential energy 4. kinetic energy 5. potential energy 4. kinetic energy 5. potential energy 5.		
<pre>1. 1500 2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s⁵) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy 4. sound energy 4. sound energy 2. notential energy 4. sound energy 4. sound energy 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 4. kinetic energy 5. 1. 4. 4. 4. m/s 5. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.</pre>		Ans: 2
<pre>1. 1500 2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s⁵) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy 4. sound energy 4. sound energy 2. notential energy 4. sound energy 4. sound energy 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 4. kinetic energy 5. 1. 4. 4. 4. m/s 5. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.</pre>		
<pre>1. 1500 2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s⁵) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy 4. sound energy 4. sound energy 2. notential energy 4. sound energy 4. sound energy 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 4. kinetic energy 5. 1. 4. 4. 4. m/s 5. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.</pre>	Ouestion (13): 1.5 kW = w	vatts
2. 150 3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 5. 1. 0.45 m/s 1. 1.4 m/s 3. 1.4 m/s 4. 4.4 m/s		
3. 15000 4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mns: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 2. momentum 3. potential energy 4. kinetic energy 5. 1. 0.45 m/s 3. 1.4 m/s 4. 4.4 m/s		1. 1500
4. 15 Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy 4. sound energy Mans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same Lacceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 2. i. acceleration 2. momentum 3. potential energy 4. kinetic energy 3. jotential energy 4. kinetic energy 5. Ans: 5. A		2. 150
Ans: Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy + kinetic energy 3. potential energy + kinetic energy 4. sound energy Mans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy Mass: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		3. 15000
Question (14): A man of mass 50 kg jumps to a height of 1 m. His potential energy at the highest point is (g = 10 m/s ²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy 4. sound energy 4. kinetic energy 5. 1. 0.45 m/s 5. 1. 4 m/s 4. 4.4 m/s 5. 1. 0.45 m/s 5. 1. 4 m/s 5. 1. 5 m/s		
<pre>is (g = 10 m/s²) 1. 50 J 2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Ans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 5. 1. 0.45 m/s 5. 1. 4 m/s 5. 1. 4</pre>		Ans: 1
2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mns: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 5. Mass: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		sg jumps to a height of 1 m. His potential energy at the highest point
2. 60 J 3. 500 J 4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mns: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 5. Mass: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		1. 50 J
4. 600 J Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mass Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy Mass: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 3. 1.4 m/s 4. 4.4 m/s		
Ans: Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Mass: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 7. Mass: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		3. 500 J
Question (15): The type of energy possessed by a simple pendulum, when it is at the mean position is 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Ans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 3. potential energy 4. kinetic energy 4. kinetic energy 4. kinetic energy 4. kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		4. 600 J
 1. kinetic energy 2. potential energy 3. potential energy + kinetic energy 4. sound energy Ans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s 		Ans:
4. sound energy Ans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s	2. po	otential energy
Ans: Question (16): An iron sphere of mass 30 kg has the same diameter as an aluminium sphere whose mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy Mans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		
mass is 10.5 kg. The spheres are dropped simultaneously from a cliff. When they are 10 m from the ground, they have the same 1. acceleration 2. momentum 3. potential energy 4. kinetic energy 4. kinetic energy Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		Ans: 1
2. momentum 3. potential energy 4. kinetic energy Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s	mass is 10.5 kg. The	spheres are dropped simultaneously from a cliff. When they are 10
3. potential energy 4. kinetic energy Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		1. acceleration
4. kinetic energy Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		
Ans: Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		3. potential energy
Question (17): A 1 kg mass has a kinetic energy of 1 joule when its speed is 1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		
1. 0.45 m/s 2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		Ans: 1
2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s	Question (17): A 1 kg mass has a k	cinetic energy of 1 joule when its speed is
2. 1 m/s 3. 1.4 m/s 4. 4.4 m/s		1. 0.45 m/s
4. 4.4 m/s		
Ans:		4. 4.4 m/s
		Ans: 3

Website: <u>www.scientiatutorials.in</u> **T** +91 9864920707 E-mail: <u>scientiatutorials@gmail.com</u>

CLASS: IX NCERT (CBSE)

PHYSICS: FOR CLASS 9 PAGE : 4 Work and Energy

Question (18): If air resistance is negligible, the sum total of potential and kinetic energies of a freely falling body _____

- 1. increases
- 2. decreases
- 3. becomes zero
- 4. remains the same

Ans: 4

Question (19): Name the physical quantity which is equal to the product of force and velocity.

- 1. work
- 2. energy
- 3. power
- 4. acceleration

Ans: 3

Question (20): An object of mass 1 kg has potential energy of 1 joule relative to the ground when it is at a height of _____.

1. 0.102 m 2. 1 m 3. 9.8 m 4. 32 m

Ans: 1

Website: www.scientiatutorials.in **T** +91 9864920707 E-mail: scientiatutorials.in **Scientiatutorials.in Scientiatutorials Scientiatutoriatutoriatutorials Scientiatutori**