ELECTRICITY

Question 1: What is the SI unit of charge?

Answer: The SI unit of charge is coulomb.

Question 2: How many electrons constitute a charge equal to 1 C?

Answer: 1 Coulomb of charge has 6.25 x 10¹⁸ electrons.

Question 3: State ohm's law.

Answer: When temperature and other physical parameters remain constant, the current flowing

through a conductor is directly proportional to the potential difference across its ends.

Question 4: Which effect of current is used in the following appliance? a) electric bulb b) immersion

rod c) electric iron d) galvanometer

Answer: For electric bulb, immersion rod and electric iron, heating effect of current is used. For

galvanometer magnetic effect of current is used.

Ouestion 5: Define watt and watt hour.

Answer: Watt is the unit of power. If 1 joule of energy is consumed in 1 second, we say the power of the device is 1 watt. Watt hour is the unit of energy. If a device with a power 1 watt works for 1 hour 1 watt hour amount of energy is consumed.

Question 6: Which of the following graphs depict ohm's law.

Answer:

Graph (a) represents ohm's law since a straight line which shows that 'I' is directly proportional to 'V' (i.e., ohm's law).

Question 7: Two coils have a combined resistance of 25 when connected in series and a resistance of 4 when connected in parallel. What is the resistance of each coil?

Answer: Let the resistance be R $_1$ and R $_2$, and R $_s$ represents resistances in series and R $_p$ represents

resistance in parallel.

According to the given data

Website: www.scientiatutorials.in **2** +91 9864920707 E-mail: scientiatutorials@gmail.com

$$R_1 + R_2 = R_S = 25 \Omega_{(1)}$$

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_p} = \frac{1}{4}$$

$$\frac{R_2 + R_1}{R_1 R_2} = \frac{1}{4}$$
 (2)

$$R_1 + R_2 = 25$$

$$R_1 R_2 = 100$$

$$(R_1 - R_2)^2 = (R_1 + R_2)^2 - 4R_1R2$$

= $25^2 - 4(100)$
= $625 - 400$
= 225

$$R_1 - R_2 = 15$$

$$R_1 + R_2 = 25$$

Adding
$$2R_1 = 40$$

$$R_1 = 20 R_2 = 5$$

Question 8: On what factor's does the heating effect of current depend on.

Answer: The heating effect of current depends on

- The square of the amount of current flowing
- The resistance of the wire and
- The time of flow of current

Question 9: Name the instrument that measures the potential difference across the ends of a current carrying conductor. How is the instrument connected to the circuit?

Answer: Voltmeter measures the potential difference across the ends of a conductor. It is connected in parallel across the element through which current flows due to a certain potential difference.

Question 10: When are several resistors in a circuit said to be connected in parallel?

Answer: Several resistors are said to be connected in parallel when the potential difference across the resistors remain the same.

ELECTRICITY

Question 11: Two bulbs have ratings 100 W, 220 V and 60 W, 220 V respectively. Which one has a greater resistance?

Answer:

$$P=VI=\frac{V^2}{R}$$

For the same V, R is inversely proportional to P. Therefore, the bulb 60 W, 220 V has a greater resistance.

Question 12: A torch bulb has a resistance of

 1Ω when cold. It draws a current of 0.2 A from a source of 2 V and glows. Calculate

- (i) the resistance of the bulb when glowing and
- (ii) explain the reason for the difference in resistance.

Answer:

(i) When the bulb glows:

$$V = I R$$
 ---- Ohm's law

$$R = \frac{V}{I}$$

$$=\frac{2}{0.2}$$

$$=10\Omega$$

- (ii) Resistance of the filament of the bulb increases with increase in temperature. Hence when it glows its resistances is greater than when it is cold.
- Question 13: Calculate the resistance of 1 km long copper wire of radius 1 mm.

(Resistivity of copper = $1.72 \times 10^{-8} \Omega m$)

Answer:

$$L = 1 \text{ km} = 1000 \text{ m}$$

$$R = 1 \text{ mm} = 1 \text{ x } 10^{-3} \text{ m}$$

$$A = \pi r^{2}$$

$$= 3.14 \times (1 \times 10^{-3})^{2}$$

$$= 1.72 \times 10^{-8} \Omega m$$

ELECTRICITY

Re sis tance of the wire R = $\rho \frac{L}{A}$

$$R = 1.72 \times 10^{-8} \times \frac{1000}{3.14 \times \left(10^{-3}\right)^{2}}$$

Question 14: When a potential difference of 2 V is applied across the ends of a wire of 5 m length, a current of 1A is found to flow through it. Calculate: (i) the resistance per unit length of the wire (ii) the resistance of 2 m length of this wire (iii) the resistance across the ends of the wire if it is doubled on itself.

Answer:

(i)
$$V = IR$$
 ----- Ohm's law
$$R = \frac{V}{I}$$
$$= \frac{2}{1}$$

Re sis tance per unit length = $\frac{2\Omega}{5m}$ = $0.4\Omega m^{-1}$

- (ii) Resistance of 2 m length of the wire = 0.4×2 = 0.8Ω
- (iii) When the wire is doubled on itself:
 - (1) the area of cross-section is doubled. If A is the original C.S. area, now it is 2 A.
 - (2) The length becomes half i.e. $\frac{L}{2}$

Resistance of this wire = R' =
$$\rho \frac{L/2}{2A}$$

= $\rho \frac{L}{4A}$
= $\frac{1}{4}$, $\rho \frac{L}{A}$

But
$$p \frac{L}{A} = 2\Omega$$
 (calculated in (i))

$$\therefore \mathsf{R'} = \frac{1}{4} \times 2\Omega$$

$$= 0.5\Omega$$