				PACE 1				
CLASS: IX NCERT (CBSE) PAGE: 1 Force and Laws of Motion								
NCERT / CBSE TEXTBOOK EXERCISE QUESTIONS SOLVED								
Q.1: to be tra the mag Ans:	2.1: An object experiences a net zero external unbalanced force. Is it possible for the object object object the non-zero velocity? If yes, state the conditions that must be placed object he magnitude and direction of the velocity. If no, provide a reason.							
i1 t	Yes, an object may tra t is zero. A rain drop falls do he up thrust and the velocity	avel with a non-zero with a constant ve of air. The net force of	velocity even when the net ext locity. The weight of the drop i on the drop is zero.	ernal force on s balanced by				
Q.2: Ans:	<i>When a carpet is beaten with a stick, dust comes out. Explain, why?</i>							
, «но. С	When a carpet is beaten with a stick it comes into motion at once. But the dust particles continue to be at rest due to inertia and get detached from the carpet.							
Q.3: Ans:	Why is it advised to tie any luggage kept on the roof of a bus with a rope?							
f. t	Due to sudden jerks or due to the bus taking sharp turns on the road, the luggage may fall down from the roof because of its tendency to continue to be either at rest or in motion in the same direction (inertia of motion). To avoid this, it advised to tie the luggage kept on the roof of a bus with a rope.							
Q.5: c	A truck starts from rest and rolls down a hill with constant acceleration. It travels a distance of 400 m in 20 sec. Find its acceleration. Also find the force acting on it if its mass is 7 metric tones.							
Ans:	Here, u = We know Or, 400 = Or, a = 2 Now, m a Or, F	= 0, s = 400 m, t = 20 y, s = ut + $\frac{1}{2}$ at ² = 0 + $\frac{1}{2}$ a (20) ² = 7 MT = 7 MT = 7000 kg, = 2 ms ⁻² = ma = 7000 x 2	S					
		= 7000 x 2 = 14000 N Ans.						

Q.6: A stone of 1 kg is thrown with a velocity of 20 ms⁻¹ across the frozen surface of a lake and comes to rest after travelling a distance of 50 m. What is the force of friction between the stone and the ice? Ans:

Here, m = 1 kg, u = 20 ms⁻¹ v = 0, s = 50 m Since, $v_2 - u_2 = 2as$, Or, 0 - 20² = 2a x 50, Or, a = -4 ms⁻² Force of friction, F = ma = -4N *Ans*.

Website: www.scientiatutorials.in 2 +91 9864920707 E-mail: scientiatutorials@gmail.com

CL	ASS: IX NCERT	(CBSE)			PHYSICS: For Class	9 Page:	2
Q.7:	An 8000 ka	FORCE AN engine pulls a train c	D LAWS C	DF MC NS. ea	DTION ach of 2000 kg along a l	norizontal	track.
If the er	igine exerts a force	e of 40000 N and the	e track off	fers a	friction force of 5000 N	, then	
calculat	e:	() - 1					
		(a) The net accelerating force;(b) The acceleration of the train; and					
Ano:	(c) The force of wagon 1 on wagon 2.						
AIIS.	Total mass.	m = mass of engine	e +	F	mass of wagons		
	Or,	m = 8000 = 18000 kg.	+	F	5 x 2000		
	(a) The net a	(a) The net accelerating force,					
	Or,	F = Engine force - F = 40000 - 5000	Frictional	TOPCE	3		
		= 35000 N					
(b) The acceleration of the train,							
		a = r - m = 35000 ÷ 1	8000				
		$= 1.94 \text{ ms}^{-2}$					
	(c) The force	e of wagon 1 on wag	on 2				
		= The net accelera	ting force	-	(mass of wagon x acce	leration)	
		= 35000 = 31111 2 N Ans		-	(2000 x 1.94	-)	
		- 01111.2 107.000					
Q.10: at const	Q.10: Using a horizontal force of 200 N, we intend to move a wooden cabinet across a floor at constant velocity. What is the force of friction that will be exerted on the cabinet?						floor
Ans:	The cabinet will move with constant velocity only when the net force on it is zero.						
Г	herefore, force of friction on the cabinet = 200 N , in a direction opposite to the direction of						
r	notion of the cabin	et.					
Q.11:	Two objects	each of mass 1.5 k	kg are mo	oving	in the same straight lin	e but in op	posite
C t	lirections. The velo opether What will	ocity of each object	is 2.5 ms	s⁻' be ≥d ob	fore the collision during	y which the	y stick
· · ·		be the velocity of the	o combine				
Ans:	Hara	m m 1.5 kg					
	nere,	$m_1 = m_2 = 1.5 \text{ kg},$ $u_1 = 2.5 \text{ ms}^{-1}$					
		$u_2 = -2.5 \text{ ms}^{-1}$					
	Let v be the By the law o	velocity of the comb f conservation of mo	ined obje	ct aft	er collision.		
	by the law o		incinain,				
	Total momen	ntum after collision	= 7	Fotal I	momentum before collis	ion,	
	Or, (1 Or, (1	.5 + 1.5) v	= 1	n₁u₁ - I.5 x 2	+ m ₂ u ₂ 2.5 +1.5 x (–2.5)		
		, 1 .	[negativ	ve sig	n as moving in opposite	direction]	
	Or, v	= 0 ms ⁻ <i>Ans</i> .					
Q.12:							
v	Vebsite: <u>www.scien</u>	itiatutorials.in 🔁 +91	9864920)707 I	E-mail: <u>scientiatutorials@</u>	<u> Jgmail.com</u>	

С	CLASS: IX NCERT (CBSE) PHYSICS: FOR CLASS 9 PAGE : 3					
	According to the third law of motion when we push on an object, the object pushes back on us with an equal and opposite force. If the object is a massive truck parked along the roadside, it will probably not move. A student justifies this by answering that the two opposite and equal forces cancel each other. Comment on this logic and explain why the truck does not move.					
Ans:	The logic is that Action and Reaction always act on different bodies, so they can not cancel each other. When we push a massive truck, the force of friction between its tyres and the road is very large and so the truck does not move.					
Q.13:						
	A hockey ball of mass 200 gm travelling at 10 ms ⁻¹ is struck by a hockey stick so as to return it along its original path with a velocity at 5 ms ⁻¹ . Calculate the change of momentum occurred in the motion of the hockey ball by the force applied by the hockey stick.					
A						
Ans:	Change in momentum = m (v - u) = $0.2 (-5 - 10)$ = -3 kg ms^{-1} .					
	(The negative sign indicates a change in direction of hockey ball after it is struck by hockey stick. Magnitude of change in momentum = 3 kg ms ⁻¹).					
Q.16:						
	An Object of mass 100 kg is accelerated uniformly from a velocity of 5 ms^{-1} to 8 ms^{-1} in 6 sec. Calculate the initial and final momentum of the object. Also find the magnitude of the force exerted on the object.					
Ans:						
	Here, m = 100 kg, $u = 5 \text{ ms}^{-1},$ $v = 8 \text{ ms}^{-1},$ t = 6 sec.					
	Initial momentum, $p_1 = mu = 500 \text{ kg ms}^{-1}$ Final momentum, $p_2 = mv = 800 \text{ kg ms}^{-1}$					
	The magnitude of the force exerted on the object,					

= $(p_2 - p_1) \div t$ = $(800 - 500) \div 6$ = 50 N Ans.

F

Website: <u>www.scientiatutorials.in</u> **T** +91 9864920707 E-mail: <u>scientiatutorials@gmail.com</u>